Bayesian Networks


Are you looking to deepen your insights on which variables influence each other? Or do you want to use a model that allows you to incorporate expert knowledge with a state-of-the-art algorithm? Join our deep-dive on Bayesian Networks, where we’ll address essential concepts of Bayesian thinking, network model basics, and model variable interactions using Bayesian Networks.

Duration: 1 day

Star Level: Master

Certification: Yes


MIacademy / Badge Overview / Open Course Calendar / 3324 Interpreting Variable Relationships

Course Description

Our one-day training will start with an outline of how graph theory can be used to visualize classification problems and deepen your insights. We then move onto an in-depth discussion of the Bayes theorem, explaining the conditional probabilities, chain rule, and practical uses, along with interpreting the results of the Bayesian network and using Naïve-Bayes for classification problems. Finally, we address advanced classification networks using Tree Augmented Networks and Targeted Bayesian Network Learning. Challenge yourself with Bayesian Networks and you will walk away with these skills to successfully incorporate graph models. Rocketing your success and ability to understand and explain both your model output and variable interactions.



Why is this for you?


Understanding the main drivers of your model and their interactions are key to successful modeling. Bayesian belief nets are one of the most important probabilistic modeling methods in data mining and machine learning, with unique properties that are not present in other models. The Bayesian theory supports diagnosis rather than just prediction, thus it is explanatory, helping the user understand some counter-intuitive phenomena and uncover the causal mechanisms that affect the target variable.



Who should attend?


This training is designed for Data Scientists who have completed our Machine Learning Process (3201) badge. This course deals with complex statistical and modeling concepts, therefore, participants must have a comprehensive understanding of mathematics and existing knowledge of model theory and programming language R or Python to succeed.



What will you learn?


This training will work with the concept of variable importance within different modeling settings, SHAP-values, Bayes’ theorem, Tree Augmented Networks (TAN) theory, Targeted Bayesian Network Learning (TBNL) theory, and extended classification and model interpretation cases in R or Python. You will learn:

  1. How graph theory works
  2. The conditional probabilities and chain rules of the Bayes theorem
  3. How to interpret a Bayesian network
  4. The Naïve-Bayes model
  5. Advanced classification networks TAN and TBNL



Learning Goals


  • Introduction to graph theory – Understand and explain how graph theory can be used to visualize classification problems
  • Fundamentals of Bayes’ theorem – Know the conditional probabilities and chain rules of Bayes’ theorem
  • Understanding Bayesian Networks – Capable of interpreting the results of a Bayesian network
  • Basic classification networks – Perform classification and interpret results using Naïve-Bayes
  • Advanced classification networks – Use TAN and TBNL for classification problems


Theory and practical use


All trainings in the GAIn portfolio combine high-quality standardized training material with theory sessions from experts and hands-on experience where you directly apply the material to real-life cases. Each training is developed by top of the field practitioners which means they are full of industry examples along with practical challenges and know-how, fueling the interactive discussions during training. We believe this multi-level approach creates the ideal learning environment for participants to thrive.





  • Machine Learning
  • Statistics
  • Bayes’ theorem
  • Bayesian Networks
  • Graph theory
  • R
Interested in taking the course?

Open Course Schedule


MIacademy offers part of its portfolio in an Open Course Schedule Format in our location in the center of Amsterdam. Via the form below you can register your interest to participate. Our team will contact you to finalize the booking and answer any questions you may have.

All of our courses are delivered by our expert trainers.


If no dates are mentioned, this specific course is not scheduled yet in 2020. If this is the case you can use the form to register your interest. In case there is enough demand MIacademy can schedule additional courses and will notify you.

Dates & Availability


In-company Training Programs

Are you interested in training a larger group of people, looking for specific training and/or interested in creating a company-wide program? We will be happy to assist!

Whether you have a very specific training need (for example: training your Data Engineers on advanced technical topics, or your Data Scientists on model implementation), or the need for a large transformational program, or something in between, we can help. Over the past 13 years, we have built up extensive experience not only in the implementation of multi-year, multi-population, multi-country programs but also in providing high quality, very specific modules for specific target groups. Both in in-house set-ups and cross-company programs. Not sure what type of program would fit your organization best? We’d be happy to discuss the best approach together.